Conformational Constrained 4-(1-Sulfonyl-3-indol)yl-2-phenylaminopyrimidine Derivatives as New Fourth-Generation Epidermal Growth Factor Receptor Inhibitors Targeting T790M/C797S Mutations

J Med Chem. 2022 May 12;65(9):6840-6858. doi: 10.1021/acs.jmedchem.2c00168. Epub 2022 Apr 21.

Abstract

Tertiary C797S mutation of epidermal growth factor receptor (EGFR)-mediated resistance in non-small-cell-lung-cancer (NSCLC) patients is still an unmet clinical need. Several classes of adenosine 5'-triphosphate-competitive or allosteric EGFRT790M/C797S inhibitors and degraders have been developed, but none of them have received approval from the regulatory agencies. Herein, we report the structure-based design of conformational constrained 4-(1-ethylsufonyl-3-indolyl)-2-phenylaminopyrimidines as new EGFRT790M/C797S inhibitors by using a macrocyclization strategy. Representative compound 18j potently inhibited EGFR19del/T790M/C797S and EGFRL858R/T790M/C797S mutants with IC50 values of 15.8 and 23.6 nM and suppressed Ba/F3-EGFRL858R/T790M/C797S and Ba/F3-EGFR19del/T790M/C797S cells with IC50 values of 0.036 and 0.052 μM, respectively, which is 10-20-fold more potent than brigatinib. 18j also potently inhibited the EGFR19del/T790M/C797S-mutated PC-9-OR NSCLC cell proliferation with an IC50 value of 0.644 μM but was less potent for parental Ba/F3 and A431 cells. This study provides a new lead compound for drug discovery to combat EGFRC797S-mediated resistance in NSCLC patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Drug Resistance, Neoplasm
  • ErbB Receptors
  • Humans
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Mutation
  • Protein Kinase Inhibitors / pharmacology

Substances

  • Protein Kinase Inhibitors
  • ErbB Receptors